ar X iv : q ua nt - p h / 05 11 22 5 v 3 17 O ct 2 00 6 The foundations of statistical mechanics from entanglement : Individual states vs . averages
نویسنده
چکیده
We consider an alternative approach to the foundations of statistical mechanics, in which subjective randomness, ensemble-averaging or time-averaging are not required. Instead, the universe (i.e. the system together with a sufficiently large environment) is in a quantum pure state subject to a global constraint, and thermalisation results from entanglement between system and environment. We formulate and prove a “General Canonical Principle”, which states that the system will be thermalised for almost all pure states of the universe, and provide rigorous quantitative bounds using Levy’s Lemma.
منابع مشابه
ar X iv : q ua nt - p h / 04 05 11 6 v 3 23 A ug 2 00 5 Complementarity of Entanglement and Interference
A complementarity relation is shown between the visibility of interference and bipartite entanglement in a two qubit interferometric system when the parameters of the quantum operation change for a given input state. The entanglement measure is a decreasing function of the visibility of interference. The implications for quantum computation are briefly discussed.
متن کاملar X iv : q ua nt - p h / 05 10 22 4 v 1 28 O ct 2 00 5 ON QUANTUM LYAPUNOV EXPONENTS
It was shown that quantum analysis constitutes the proper analytic basis for quantization of Lyapunov exponents in the Heisenberg picture. Differences among various quantizations of Lyapunov exponents are clarified.
متن کاملar X iv : q ua nt - p h / 04 11 17 2 v 1 2 3 N ov 2 00 4 Information and Entropy in Quantum Theory
متن کامل
ar X iv : q ua nt - p h / 04 05 11 6 v 1 2 0 M ay 2 00 4 Complementarity of Entanglement and Interference
A complementarity relation is shown between the visibility of interference and bipartite entanglement in a two qubit interferometric system when the parameters of the quantum operation change for a given input state. The entanglement measure is a decreasing function of the visibility of interference. The implications for quantum computation are briefly discussed.
متن کاملar X iv : q ua nt - p h / 04 05 11 6 v 2 1 0 A ug 2 00 4 Complementarity of Entanglement and Interference
A complementarity relation is shown between the visibility of interference and bipartite entanglement in a two qubit interferometric system when the parameters of the quantum operation change for a given input state. The entanglement measure is a decreasing function of the visibility of interference. The implications for quantum computation are briefly discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006